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Generalized Berry conjecture and mode correlations in chaotic plates
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We consider a modification of the Berry conjecture for eigenmode statistics in wave-bearing systems. The
eigenmode correlator is conjectured to be proportional to the imaginary part of the Green’s function. The
generalization is applicable not only to scalar waves in the interior of homogeneous isotropic systems where
the correlator is a Bessel function, but to arbitrary points of heterogeneous systems as well. In view of recent
experimental measurements, expressions for the intensity correlator in chaotic plates are derived.
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In 1977 Berry conjectured that the higher eigenmodes of dated superpositions of plane waves of all wave types, as
ray-chaotic Hamiltonian, in particular a billiard, should be their relative amplitudes remain unspecified. In those recent
statistically indistinguishable from a superposition of planemeasurements on elastic waves in plates, the intensity cor-
standing waves of all directions, with uncorrelated ampli-relator did not satisfy Eq.1). This paper is intended to pro-
tudes and phasd4]; the idea is also found if2]. One im-  vide the appropriate generalization of Berry’s conjecture
mediate consequence is that the modes are Gaussian randoeeded for experiments in wave-bearing systems more com-

functions, with correlations given by plex than scalar billiards.
o () o We begin with an identity, written in the form it takes for
UPO)U™ (X + 1)) = A%Symdo(Kr) a tensor Green'’s function appropriate for a vector wave equa-
where bracketg ) represent spatial average over positign tion,
A is an unimportant normalization factar=|r| is a separa- u™(x;) ® uM(x,)
tion distance, and is the wave number that appears in the G(X1,Xz,0) = 2, — 2 (2
governing Helmholtz equation(V2+k?)u™(x)=0. Another n o wp(w+ie)

immediate consequence is that the intensity correlator is 35 3 modal sum over the normalized real modes with eigen-
UM )2UM(x +1)2) = A1 + 233(kn)]. (1) {;e]zquenmesmn. The imaginary part of this Green’s dyadic is
Berry established the conjecture for an asymptotic regime -
in which wavelengths are much less than system size. It is  Im G(xy,X,,») = — >, U™ (X)) ® U™ (x,) 8w — ;).
only approximate at finite wavelength, i.e., in practice. The 207,

conjecture has been shown to be incorrect at finite Wavesis may be averaged, either over a short range in frequency

I[%?gttﬁ é 2;2,[2?122 gfvc;]?:g rrgfﬁz zrr:cc)ivevr:t\g gg?ﬁihtg ﬁgﬁ{ rc')n over an ensemble of systems that differ from the system of
the “quantum equidistribution theorem” put forth by Shnire- interest only at positions far from the closely spaced points

Iman[4]. The conjecture is manifestly incorrect if attention is % andx;. In either caseS is largely unaffected. The right
.[ - i y side becomes the corresponding modal correlator. It is seen
restricted to points near a boundary where, locally, plan

: : . %o be in general nod,, but rather ImG. It is not a spatial
waves are correlated with their reflections. Nevertheless, mgverage as called for by the Berry conjecture, but rather a
merical and experimental evidence shows that it is Widelyfrequen(;y or ensemble average '
Satsgcegﬁf]ﬁwizg?réﬂg:igcoenselilgs;tic waves in plates have un- Thus we are led to a generalized Berry conjecture. Based
. ) X P Upon the exact identity for ensemble or frequency averages,
derlined the made_quacy of the conjecture, as stated, for SYwe conjecture that it is also true for spatial averages at a
tems more complicated than the scalar billig@. Three-

dimensional microwave billiardgr merely thick quasi-two- fixed mode. This reduces to the Berry conjecture for the
: ; -~ : y thick quasi-t simple case of a scalar wave. The conjecture about the cor-
dimensional billiards for which the electric field satisfies a

relator is, as demonstrated above, manifestly correct if what

vector wave equation, and elastic wave systems in gener%he means by the averaging is a frequency or ensemble av-
require a statement about the correlations of the vector:

valued eicenmode@l. Even in scalar wave svstems. if they &' 29€- The potentially more problematic aspects lie in the
. 9 ef8]. S . Y ’ y upposition that this correlator may be found within spatial
are inhomogeneous, or if interest includes points near bouncg—

aries, the conjecture needs modification. It is not sufficient tq verages on a single mode of a single sample from the en-
’ I ' semble, or for that matter that the statistics are Gaussian.

extend the conjecture by expressing the modes as uncorre- When this generalized Berry conjecture is applied to the
modes of an infinite isotropic homogeneous three-
dimensional3D) elastic body, the modal correlator is given
*Electronic address: akolzine@uiuc.edu by the Green’s functiorG”, satisfying Navier's equations
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A+ ) V(V -G¥) + uV2G” + pw®G” = -1 8%(r), 3
with | being the identity tensol and u being elastic Lamé _ (a)
constants, angh representing material density. The spatial - (1)
Fourier transform of the solution is obtained readily, —_— ()
) 5 H 2t
. q @ q/lq| I -a®ala
pG*(d,w) = + :
ol = (0 +12)?  |qf’c = (0 +12)? s
2 A
The first term is the longitudinal part with wave spegdhe 7\\\ SEN
second is the transverse part with wave spge®n taking /\/‘\\\
the imaginary part of the 3D inverse Fourier transform, one 4 6 8 10 12
finds ker
FIG. 1. Intensity correlator of a single flexural mode fop
Im G” « f cogq - r)[c3a(q| - wlc)g @ q/|g)? equal(a) 0, (b) 2, and(c) .
+¢%8(al - w/c) (I - g ® a/jaf?)]d’Qqda. the (unknown) polarization vectop of the detector. Given a

field (an eigenmodey(x) they constructed an “intensity cor-
It is seen that InG™ is a superposition of plane waves of the rg|ator”

two types and of all directions of propagation, with relative
strengths given by the inverse cubes of the wave speeds, i.e., 1(r) = ([P LR (X + 1) K [PY(x) 152,

by equipartition[11]. where the overbar indicates additional averaging over the

If the frequenc_y av_er_aging is over a sufficiently brOaddirection of the vector. We presume that the detector po-
band, then, even in a finite system, the correlator reduces tlo :

that in the unbounded medium, I8%. This is readily estab- arizationp is held fixed during this averaging. Inasmuch as

lished, as in Ref[12], by recognizing that short-time re- u is a Gaussian process, the above fourth order statistic re-

sponses are independent of distant parts of a structure arq ces to the sum of three products of two second-order sta-
P . pena P . ' tistics. In terms of the generalized Berry conjecture the cor-
that sufficiently short-time responses are equivalent to fre- . .
. - A relator is rewritten as
quency averaging over bands of sufficient width. The theo-
rem is readily generalized to the vicinity of a boundary, ora  |(r)=1+2(p - ImG(x,x +r) - PY2/(P - IMG(X,X) - p)2.
scatterer. In these cases, it is not difficult to show that the

diffuse field-field correlator may also be constructed by su- (3)
perposing an equipartitioned set of uncorrelated incidenkor the surface of a plate in flexure, even far from the edges,
plane or incoming or standing waves together with their cosuch thatG ~G~, the Green’s function is not as simple as
herent reflections and scatterings. For the special case @fight have been hoped,
elastic waves near a free surface, this was explordd3h o

The Green’s function is more complicated in a plate, in 1M G™(r) = %3 ® %37 Jo(ksr) = Jo(kir))/2

particular if its thickness is comparable to a Wavelength. In + R0 ® Ko Jo(ket) + o(ker)]/2
the work reported by Schaaét al. [7], an intensity cor- T L
relator was constructed by averages over space and over a + (X1 ® X3 = X3 ® X9) vda(KT) + X3 ® X3Jo(Ksr).

small number of modes. Due to the good preservation o
up/down symmetry, all modes were either of a purely flex-

u_ral (?dd dupr/1down parlt);é:haracter Ofl_r? mmtu_re of elxtten- and pointing towards the surface at hand. Faetapresents
sional and shegeven up/down pariy Thus their correlator a degree of in-plane surface motion associated with such

;hould be the imaginary parts of the part!al Green's funC'Waves and vanishes at long wavelength. The correlai®r
tions. Except for the effects of nonzero thickness to waveq, onl,y dependent upon separation distandsut also upon
length ratio, these modes have displacements that are pureljlg(

. : e angle between polarization of the detegborand the
out-of-plane or purely in-plane, respectively.

Mod hich i i focti bout th separation vector directiorn/r.
odes which are antisymmetric on refiection about the By averaging over the direction of vector for a single

mid-plane, sometimes called flexural, are uncoupled to th s :
others; at frequencies below the first cutgth=1c,/2h, Rexural mode, one findésee Appendix
whereh is the half—width of the pIat)ethe're' is a s'ingle wave ~ q\]g(kfr)(l +12p212)% + J5(ket ) 1v*p?18

numberk; governing such waves. Their intensity correlator I(r)=1+2 (1 +12p202)? )

must therefore be formed from a single Bessel function Ve

Jo(ksr). This was, in fact, observefV]; Schaadtet al. re-  with p?=(p5+p?)/p3. The correlator is plotted in Fig. 1 for a
ported a good fit to 1+\%(kfr). These modes in fact have number of values ofp. It is equal to 3 at zero separation,
vector valued fields, so the correlator is technically a tensom =0, as demanded by Gaussian mode statistics, and is higher
The measured correlator is a contraction of that tensor witlhan 1+2](2)(kfr) for nonzero values ofip, with the most

Unit vectorsX; andX, lie in the midplane of the plate, with
X, taken in the direction of, andX; is normal to the plane
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pronounced difference observed near the first minimum. tan gh/tanah = - [(k? — B?)%4aBK?T*:,

At realistic values ofvp (Schaadtet al. estimate p
~0.33; we calculater=-0.68 at the relevant frequencjes where +1 in the exponent corresponds to the odd parity
the effect is small, and difficult to resolve within the data’s modes, and -1 to the even parity modes. The dispersion
precision. The sole anomaly in the data is the best-fit value ofelation gives the wave numbers of the odg) and even
the relative variance at zero separation, 2.93+0.05, amodes(k;) as multibranched implicit functions of the fre-
anomaly with only small statistical significance. Such a valuequency,k=k,(w). Expressions fotJ and W of the odd and
cannot be explained with the current theory; indeed the basigven modes, respectively, are
assumption of Gaussian statistics demands that this quantity
be 3. However, if the quantity 2.93 is understood as the ratio U = 2k®8 sin gh sin axs — (k?* = B2)kg sin ah sin Bxs,
between the relative variance at zero separation and at the
first minimum, then the current theory can explain the
anomaly, by calling fotvp|=1.06.

The data’s precision does not support any more detaile
comparisons. This is also the case with the in-plane modes.
Modes which have even up/down parity consist of an equi- _ (K2 a2
partitioned diffuse mixture of longitudinal waves with wave U= 244 cosph cosaxs = (K - £k cosah cospx,
numberk; (which have both in-plane and, due to the Poisson
effect, out-of-plane components of displacememtnd in- W = 2k?a3 cosBh sin axs + (K? — B%)k? cosah sin Bxs.
plane horizontally polarized shear waves with wave number

By specifying a complete set of solutiofisn the plane
Kspr The$e waves mode convert 1o Of'e another at the pla\ﬁor example, standing plane waves or standing cylindrical
boundaries. Thus the relevant Green’s tensor has two wa

gy ; waveg, we construct the modes of an infinite plate. Alterna-
numbers, and one anticipates structures like those seen

: : fﬂ/ely, we may specify a complete set of propagating waves
Figs. 4 and 5 of Schaad al. Howeyer, as in the flexgral f, in which case a complex conjugate must be inserted on the
case, one does not expect to see simple Bessel funciipns

; . . first factoru in Eq. (2). These modes are not the natural
but rather also terms ity andJ,. Th_e reIng_e amplitudes of modes of a finite plate unless the boundary conditions at the
these several terms are not obvicairiori but could be ' . .

outer rim are particularly special. They may nevertheless be

predicted by the present theory. An attempt to fit their data toused in a modal expansion of the Green’s function if atten-

the_ present theory i§ probgbly unwgrranted at this time. '%ion is confined to early enough timdslternatively, if a
revisit to structures like theirs, but with a well CharaCte”Zedfrequency averaging is dopas discussed above The aver-

detector of known polarization, may be |nd|cafted._ age of the exact Green'’s functi@h can then be substituted
In summary, we have advanced a modification of thel?y the Green’s function in the infinite pla@™
J .

Berry conjecture, appropriate for the eigenmode statistics We construct a partial Green's functigiq. (2)] of the

wave—bgaring systems. It is expected to be relgvant, not Onlﬁayleigh—Lamb spectrum and find its imaginary part
for elastic waves in homogeneous plates, but in general sta- '

tistical physics of waves in heterogeneous and mode- " )
converting systems as well. IM G5 = 2 [ando(Kal) 8s/2 + buJa(Kal) (8,512 =1 o1 /1) ],
n

W= 2k?a3 sin Bh cosaxs + (k% — 82)k? sin ah cosBxs,

This work was supported by the National Science Foun-

dation Grant No. CMS-0201346. -
Im G353= >, chJo(kir), (A1)
n

APPENDIX: MULTIMODE INTENSITY CORRELATOR IN
A CHAOTIC PLATE IM Gy = = IM Gayy = > dndy () Jr -
n

We start the calculation of the full intensity correlator by
first considering the normal modes of the Rayleigh-LambThe sum is taken over propagating modes only, i.e., those
spectrum[10]. The displacement vector of these modes ishaving realk,. Greek indices span the in-plane spaaeg
given by ={1,2}. By means of the factop,= U(h)/W(h)|k:kn(w), we
can write the modal amplitudeﬁ:bn:cnvﬁ andd,=c,v, in
u=[U0) KV ) + X W(xg)If (X1, %), terms of the amplitude describing out-of-plane displacement
of the plate surface,

with f satisfying a scalar two-dimensioné2D) Helmholtz K K W2(h
equation{ V?+k?]f(x;,%,)=0. The displacement components Cy= 77:(9_— — )

U andW are the solutions of a boundary-value ordinary dif- ww 2

ferential equation in. With the vertical wave numbers of f_h [U(xg) + Wxg)Jxs
longitudinal and shear waves defined &s w?/c?-k?, and

,82:w2/ct2—k2, one deduces the dispersion relation for the The horizontal shear modes have displacements purely in
odd and even up/down parity modes the plane of the plate,

k=k ()
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U =V(xa) (K V) X [Xsf (X, %2)],

the dispersion relation for the shear wave numhkgg be-
ing k=ky(w) =(w/c)?-(mn/2h). The imaginary part of the
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modal amplitudes are now as
=(1+8p)/4h¢ andc,=d,=0.

The full multimode tensor Green’s function includes the
modes of all(namely, odd and even parity Rayleigh-Lamb

and horizontal sheabranches required for its short-time ex-

follows:a,=-b,

corresponding partial Green’s function has the same form gsansion at a given frequency. The propagating modes of

for the Rayleigh-Lamb modes, EqAl). However, the

these branches contribute to the full intensity correléByr

I(r)=1+2

The averages over directions of the separation vectare
carried out with the help of the following rules:

(rof plr?)y = 8,412,

(Pl g N ITY) = (8,38, + SayBp,+ 80,08,)18.

[, @2+ c)3oken) |+ [ 2, budatkon) 78
(2, @2 +e)] |

In the special case that we have, the frequency is such that
there is only one oddflexural) mode, and the sum is re-
placed with a single term, yielding correlat@¥. The factor
v is computed for the plate parameters of R&f.(thickness
3 mm, Poisson ratio 0.33, transverse wave spegd,
=3.1 mm/us), and excitation frequencies 432, 510, 513,
514 kHz, to ber=-0.68.
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