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We consider a modification of the Berry conjecture for eigenmode statistics in wave-bearing systems. The
eigenmode correlator is conjectured to be proportional to the imaginary part of the Green’s function. The
generalization is applicable not only to scalar waves in the interior of homogeneous isotropic systems where
the correlator is a Bessel function, but to arbitrary points of heterogeneous systems as well. In view of recent
experimental measurements, expressions for the intensity correlator in chaotic plates are derived.
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In 1977 Berry conjectured that the higher eigenmodes of a
ray-chaotic Hamiltonian, in particular a billiard, should be
statistically indistinguishable from a superposition of plane
standing waves of all directions, with uncorrelated ampli-
tudes and phases[1]; the idea is also found in[2]. One im-
mediate consequence is that the modes are Gaussian random
functions, with correlations given by

kusndsxdusmdsx + r dl = A2dnmJ0skrd,

where bracketsk l represent spatial average over positionx,
A is an unimportant normalization factor,r = ur u is a separa-
tion distance, andk is the wave number that appears in the
governing Helmholtz equation,s¹2+k2dusndsxd=0. Another
immediate consequence is that the intensity correlator is

kusndsxd2usndsx + r d2l = A4f1 + 2J0
2skrdg. s1d

Berry established the conjecture for an asymptotic regime
in which wavelengths are much less than system size. It is
only approximate at finite wavelength, i.e., in practice. The
conjecture has been shown to be incorrect at finite wave-
length, inasmuch as many modes show evidence of scarring
[3], the existence of which may be understood in the light of
the “quantum equidistribution theorem” put forth by Shnire-
lman[4]. The conjecture is manifestly incorrect if attention is
restricted to points near a boundary where, locally, plane
waves are correlated with their reflections. Nevertheless, nu-
merical and experimental evidence shows that it is widely
satisfied[5], as do references in[6].

Recent measurements on elastic waves in plates have un-
derlined the inadequacy of the conjecture, as stated, for sys-
tems more complicated than the scalar billiard[7]. Three-
dimensional microwave billiards(or merely thick quasi-two-
dimensional billiards) for which the electric field satisfies a
vector wave equation, and elastic wave systems in general,
require a statement about the correlations of the vector-
valued eigenmodes[8]. Even in scalar wave systems, if they
are inhomogeneous, or if interest includes points near bound-
aries, the conjecture needs modification. It is not sufficient to
extend the conjecture by expressing the modes as uncorre-

lated superpositions of plane waves of all wave types, as
their relative amplitudes remain unspecified. In those recent
measurements on elastic waves in plates, the intensity cor-
relator did not satisfy Eq.(1). This paper is intended to pro-
vide the appropriate generalization of Berry’s conjecture
needed for experiments in wave-bearing systems more com-
plex than scalar billiards.

We begin with an identity, written in the form it takes for
a tensor Green’s function appropriate for a vector wave equa-
tion,

Gsx1,x2,vd = o
n

usndsx1d ^ usndsx2d
vn

2 − sv + ı«d2 , s2d

as a modal sum over the normalized real modes with eigen-
frequenciesvn. The imaginary part of this Green’s dyadic is
[9]

Im Gsx1,x2,vd =
p

2v
o
n

usndsx1d ^ usndsx2ddsv − vnd.

This may be averaged, either over a short range in frequency
or over an ensemble of systems that differ from the system of
interest only at positions far from the closely spaced points
x1 and x2. In either caseG is largely unaffected. The right
side becomes the corresponding modal correlator. It is seen
to be in general notJ0, but rather ImG. It is not a spatial
average, as called for by the Berry conjecture, but rather a
frequency or ensemble average.

Thus we are led to a generalized Berry conjecture. Based
upon the exact identity for ensemble or frequency averages,
we conjecture that it is also true for spatial averages at a
fixed mode. This reduces to the Berry conjecture for the
simple case of a scalar wave. The conjecture about the cor-
relator is, as demonstrated above, manifestly correct if what
one means by the averaging is a frequency or ensemble av-
erage. The potentially more problematic aspects lie in the
supposition that this correlator may be found within spatial
averages on a single mode of a single sample from the en-
semble, or for that matter that the statistics are Gaussian.

When this generalized Berry conjecture is applied to the
modes of an infinite isotropic homogeneous three-
dimensional(3D) elastic body, the modal correlator is given
by the Green’s functionG`, satisfying Navier’s equations
[10]
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sl + md = s= ·G`d + m¹2G` + rv2G` = − Id3sr d,

with I being the identity tensor,l andm being elastic Lamé
constants, andr representing material density. The spatial
Fourier transform of the solution is obtained readily,

rG`sq,vd =
q ^ q/uqu2

uqu2cl
2 − sv + ı«d2 +

I − q ^ q/uqu2

uqu2ct
2 − sv + ı«d2 .

The first term is the longitudinal part with wave speedcl, the
second is the transverse part with wave speedct. On taking
the imaginary part of the 3D inverse Fourier transform, one
finds

Im G` ~E cossq · r dfcl
−3dsuqu − v/cldq ^ q/uqu2

+ ct
−3dsuqu − v/ctdsI − q ^ q/uqu2dgd2Vqdq.

It is seen that ImG` is a superposition of plane waves of the
two types and of all directions of propagation, with relative
strengths given by the inverse cubes of the wave speeds, i.e.,
by equipartition[11].

If the frequency averaging is over a sufficiently broad
band, then, even in a finite system, the correlator reduces to
that in the unbounded medium, ImG`. This is readily estab-
lished, as in Ref.[12], by recognizing that short-time re-
sponses are independent of distant parts of a structure, and
that sufficiently short-time responses are equivalent to fre-
quency averaging over bands of sufficient width. The theo-
rem is readily generalized to the vicinity of a boundary, or a
scatterer. In these cases, it is not difficult to show that the
diffuse field-field correlator may also be constructed by su-
perposing an equipartitioned set of uncorrelated incident
plane or incoming or standing waves together with their co-
herent reflections and scatterings. For the special case of
elastic waves near a free surface, this was explored in[13].

The Green’s function is more complicated in a plate, in
particular if its thickness is comparable to a wavelength. In
the work reported by Schaadtet al. [7], an intensity cor-
relator was constructed by averages over space and over a
small number of modes. Due to the good preservation of
up/down symmetry, all modes were either of a purely flex-
ural (odd up/down parity) character or a mixture of exten-
sional and shear(even up/down parity). Thus their correlator
should be the imaginary parts of the partial Green’s func-
tions. Except for the effects of nonzero thickness to wave-
length ratio, these modes have displacements that are purely
out-of-plane or purely in-plane, respectively.

Modes which are antisymmetric on reflection about the
mid-plane, sometimes called flexural, are uncoupled to the
others; at frequencies below the first cutoff(v=pct /2h,
whereh is the half-width of the plate) there is a single wave
numberkf governing such waves. Their intensity correlator
must therefore be formed from a single Bessel function
J0skfrd. This was, in fact, observed[7]; Schaadtet al. re-
ported a good fit to 1+2J0

2skfrd. These modes in fact have
vector valued fields, so the correlator is technically a tensor.
The measured correlator is a contraction of that tensor with

the (unknown) polarization vectorp̂ of the detector. Given a
field (an eigenmode) csxd they constructed an “intensity cor-
relator”

Isrd = kfp̂csxdg2fp̂csx + r dg2l/kfp̂csxdg2l2,

where the overbar indicates additional averaging over the
direction of the vectorr . We presume that the detector po-
larization p̂ is held fixed during this averaging. Inasmuch as
u is a Gaussian process, the above fourth order statistic re-
duces to the sum of three products of two second-order sta-
tistics. In terms of the generalized Berry conjecture the cor-
relator is rewritten as

Isr d = 1 + 2kp̂ · Im Gsx,x + r d · p̂l2/kp̂ · Im Gsx,xd · p̂l2.

s3d

For the surface of a plate in flexure, even far from the edges,
such thatG<G`, the Green’s function is not as simple as
might have been hoped,

Im G`sr d ~ x̂1 ^ x̂1n2fJ0skfrd − J2skfrdg/2

+ x̂2 ^ x̂2n2fJ0skfrd + J2skfrdg/2

+ sx̂1 ^ x̂3 − x̂3 ^ x̂1dnJ1skfrd + x̂3 ^ x̂3J0skfrd.

Unit vectorsx̂1 and x̂2 lie in the midplane of the plate, with
x̂1 taken in the direction ofr , and x̂3 is normal to the plane
and pointing towards the surface at hand. Factorn represents
a degree of in-plane surface motion associated with such
waves, and vanishes at long wavelength. The correlatorI is
not only dependent upon separation distancer, but also upon
the angle between polarization of the detectorp̂ and the
separation vector directionr / r.

By averaging over the direction of vectorr , for a single
flexural mode, one finds(see Appendix)

Isrd = 1 + 2
J0

2skfrds1 + n2r2/2d2 + J2
2skfrdn4r4/8

s1 + n2r2/2d2 , s4d

with r2=spx
2+py

2d /pz
2. The correlator is plotted in Fig. 1 for a

number of values ofnr. It is equal to 3 at zero separation,
r =0, as demanded by Gaussian mode statistics, and is higher
than 1+2J0

2skfrd for nonzero values ofnr, with the most

FIG. 1. Intensity correlator of a single flexural mode fornr
equal(a) 0, (b) 2, and(c) `.
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pronounced difference observed near the first minimum.
At realistic values ofnr (Schaadtet al. estimate r

,0.33; we calculaten=−0.68 at the relevant frequencies),
the effect is small, and difficult to resolve within the data’s
precision. The sole anomaly in the data is the best-fit value of
the relative variance at zero separation, 2.93±0.05, an
anomaly with only small statistical significance. Such a value
cannot be explained with the current theory; indeed the basic
assumption of Gaussian statistics demands that this quantity
be 3. However, if the quantity 2.93 is understood as the ratio
between the relative variance at zero separation and at the
first minimum, then the current theory can explain the
anomaly, by calling forunru=1.06.

The data’s precision does not support any more detailed
comparisons. This is also the case with the in-plane modes.
Modes which have even up/down parity consist of an equi-
partitioned diffuse mixture of longitudinal waves with wave
numberkl (which have both in-plane and, due to the Poisson
effect, out-of-plane components of displacement), and in-
plane horizontally polarized shear waves with wave number
ksh. These waves mode convert to one another at the plate
boundaries. Thus the relevant Green’s tensor has two wave
numbers, and one anticipates structures like those seen in
Figs. 4 and 5 of Schaadtet al. However, as in the flexural
case, one does not expect to see simple Bessel functionsJ0,
but rather also terms inJ1 andJ2. The relative amplitudes of
these several terms are not obviousa priori but could be
predicted by the present theory. An attempt to fit their data to
the present theory is probably unwarranted at this time. A
revisit to structures like theirs, but with a well characterized
detector of known polarization, may be indicated.

In summary, we have advanced a modification of the
Berry conjecture, appropriate for the eigenmode statistics of
wave-bearing systems. It is expected to be relevant, not only
for elastic waves in homogeneous plates, but in general sta-
tistical physics of waves in heterogeneous and mode-
converting systems as well.

This work was supported by the National Science Foun-
dation Grant No. CMS-0201346.

APPENDIX: MULTIMODE INTENSITY CORRELATOR IN
A CHAOTIC PLATE

We start the calculation of the full intensity correlator by
first considering the normal modes of the Rayleigh-Lamb
spectrum[10]. The displacement vector of these modes is
given by

u = fUsx3dsk−1 = d + x̂3Wsx3dgfsx1,x2d,

with f satisfying a scalar two-dimensional(2D) Helmholtz
equation:f¹2+k2gfsx1,x2d=0. The displacement components
U andW are the solutions of a boundary-value ordinary dif-
ferential equation inx3. With the vertical wave numbers of
longitudinal and shear waves defined asa2=v2/cl

2−k2, and
b2=v2/ct

2−k2, one deduces the dispersion relation for the
odd and even up/down parity modes

tanbh/tanah = − fsk2 − b2d2/4abk2g±1,

where +1 in the exponent corresponds to the odd parity
modes, and −1 to the even parity modes. The dispersion
relation gives the wave numbers of the oddskfd and even
modesskld as multibranched implicit functions of the fre-
quency,k=knsvd. Expressions forU and W of the odd and
even modes, respectively, are

U = 2k3b sinbh sinax3 − sk2 − b2dkb sinah sinbx3,

W= 2k2ab sinbh cosax3 + sk2 − b2dk2 sinah cosbx3,

and

U = 2k3b cosbh cosax3 − sk2 − b2dkb cosah cosbx3,

W= 2k2ab cosbh sinax3 + sk2 − b2dk2 cosah sinbx3.

By specifying a complete set of solutionsf in the plane
(for example, standing plane waves or standing cylindrical
waves), we construct the modes of an infinite plate. Alterna-
tively, we may specify a complete set of propagating waves
f, in which case a complex conjugate must be inserted on the
first factor u in Eq. (2). These modes are not the natural
modes of a finite plate unless the boundary conditions at the
outer rim are particularly special. They may nevertheless be
used in a modal expansion of the Green’s function if atten-
tion is confined to early enough times(alternatively, if a
frequency averaging is done) as discussed above. The aver-
age of the exact Green’s functionG can then be substituted
by the Green’s function in the infinite plateG`.

We construct a partial Green’s function[Eq. (2)] of the
Rayleigh-Lamb spectrum and find its imaginary part,

Im Gab
` = o

n

fanJ0sknrddab/2 + bnJ2sknrdsdab/2 − rarb/r2dg,

Im G33
` = o

n

cnJ0sknrd, sA1d

Im Ga3
` = − Im G3a = o

n

dnJ1sknrdra/r .

The sum is taken over propagating modes only, i.e., those
having realkn. Greek indices span the in-plane space:a ,b
=h1,2j. By means of the factornn= uUshd /Wshduk=knsvd, we
can write the modal amplitudesan=bn=cnnn

2 anddn=cnnn in
terms of the amplitude describing out-of-plane displacement
of the plate surface,

cn =
p

4

]k

]v

k

v* W2shd

E
−h

+h

fU2sx3d + W2sx3dgdx3*
k=knsvd

.

The horizontal shear modes have displacements purely in
the plane of the plate,
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u = Vsx3dsk−1 ¹ d 3 fx̂3fsx1,x2dg,

the dispersion relation for the shear wave numbersskshd be-
ing k=knsvd=Îsv /ctd2−spn/2hd2. The imaginary part of the
corresponding partial Green’s function has the same form as
for the Rayleigh-Lamb modes, Eq.(A1). However, the

modal amplitudes are now as follows:an=−bn
=s1+d0nd /4hct

2 andcn=dn=0.
The full multimode tensor Green’s function includes the

modes of all(namely, odd and even parity Rayleigh-Lamb
and horizontal shear) branches required for its short-time ex-
pansion at a given frequency. The propagating modes of
these branches contribute to the full intensity correlator(3),

Isrd = 1 + 2
fon

sanr2/2 + cndJ0sknrdg2
+ fon

bnJ2sknrdg2
r4/8

fon
sanr2/2 + cndg2 .

The averages over directions of the separation vectorr are
carried out with the help of the following rules:

krarb/r2l = dab/2,

krarbrgr i/r
4l = sdabdgi + dagdbi + daidbgd/8.

In the special case that we have, the frequency is such that
there is only one odd(flexural) mode, and the sum is re-
placed with a single term, yielding correlator(4). The factor
n is computed for the plate parameters of Ref.[7] (thickness
3 mm, Poisson ratio 0.33, transverse wave speed,ct
=3.1 mm/ms), and excitation frequencies 432, 510, 513,
514 kHz, to ben=−0.68.
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